Potential temperature and static stability

The atmosphere

Stratified in the vertical; $T(z), p(z), \rho(z)$;
Pressure decreases with height (hydrostatic)
Ideal gas: $\rho=\mathrm{p} / \mathrm{RT}$
As an air parcel is adiabatically lifted (from A to B) to a new height, all of its (ρ, p, T) change, but the potential temperature of the parcel is conserved; $\theta_{\mathrm{p}, \mathrm{B}}=\theta_{\mathrm{p}, \mathrm{A}}$ (we will use the subscript " p " to denote "parcel"), or, for the convenience of later discussion, $\theta_{p}(z+\Delta z)=\theta_{p}(z)$, where the z and Δz hare indicate the vertical potision of the parcel.

Our ultimate task, as far as static stability is concerned, is to determine whether the lifted parcel at $z+\Delta z$ is heavier or lighter than its environment at that level. If the parcel is lighter than the environment (density of parcel < density of the environment), then it would experience positive buoyancy and continue rising. In other words, a small upward perturbation of the parcel leads to further upward acceleration of the parcel \Rightarrow instability.

We will hereafter use the subscript " 0 " to denote an environmental variable and " p " to denote the value adhered to the parcel

Consider the case when the environmental potential temperature decreases with height, or $\mathbf{d} \theta_{0} / \mathrm{dz}$ < $\mathbf{0}$ (see figure)

1. We carve the parcel out of the environment at z, so $\theta_{p}(z)=\theta_{0}(z)$
2. The pressure of the parcel adjusts to its environment, $p_{p}(z+\Delta z)=p_{0}(z+\Delta z)$
3. Adiabatic process $\Rightarrow \theta$ is conserved for the parcel, so $\theta_{p}(z+\Delta z)=\theta_{p}(z)$
4. (1) \& (3) $\Rightarrow \theta_{p}(z+\Delta z)=\theta_{0}(z)>\theta_{0}(z+\Delta z)$
5. Since $p_{p}(z+\Delta z)=p_{0}(z+\Delta z), \theta_{p}(z+\Delta z)>\theta_{0}(z+\Delta z)$ implies $T_{p}(z+\Delta z)>T_{0}(z+\Delta z)$ (just look up the definition of θ)
6. Since $p_{p}(z+\Delta z)=p_{0}(z+\Delta z), T_{p}(z+\Delta z)>T_{0}(z+\Delta z)$ implies $\rho_{p}(z+\Delta z)<\rho_{0}(z+\Delta z)$ (by invoking ideal gas law)

Consider the case when the environmental potential temperature decreases with height, or $\mathbf{d} \theta_{0} / \mathrm{dz}<\mathbf{0}$ (see figure)

Conclusion: $\rho_{p}(z+\Delta z)<\rho_{0}(z+\Delta z)$; A parcel that's been lifted adiabatically from z to $z+\Delta z$ is lighter than the density of the environment at $z+\Delta z$. It will continue accelerating upward \Rightarrow The case with $\mathbf{d} \theta_{0} / \mathrm{dz}<0$ is statically unstable

If one repeats the analysis by considering an environment with $\mathbf{d} \theta_{0} / d z>0$ (see figure), it can be shown that $\rho_{p}(z+\Delta z)>\rho_{0}(z+\Delta z)$; A parcel that's been lifted adiabatically from z to $z+\Delta z$ is heavier than the density of the environment at $z+\Delta z$. It will fall back to its original position
\Rightarrow The case with $d \theta_{0} / d z>0$ is statically stable

In the preceding discussion, we can also start by pushing the air parcel down instead of lifting it up. The conclusion concerning static stability will remain the same

