	Intermittency





Impossible to predict the individual fluctuation from past history  





Studied as a statistical random process.  





Each record is smoothed by the limited response of the instrument.  





x-axis chosen in the direction of mean wind (





	�EMBED Unknown���





Experimental data may be used to obtain statistical frequency distribution of a variable.  This is compared with relevant theorethm probabilty density function - normal function - bell shaped Gaussian distribution.





Widely studied parameter of a random process – variance (�EMBED Unknown���) index of skewness, kurtosis, or fleetness, and covariance (�EMBED Unknown���).





Definitions:





Intensity of turbulence – (�EMBED Unknown���)1/2/u





Stationary turbulence – if probability distribution of fluctuation is independent of time (no trends).





Homogenous turbulence – when the probability distribution is independent of position in fluid.





�
	Inertial subrange





	Turbulence commonly receives its energy at large scale while the viscous dissipation of energy is at small scales.  





( a range of eddy sizes, which are not directly, affected by maintenance and dissipation mechanisms – the inertial subrange.





When Reynolds number is large, Kolmogorov predicts that 3-D turbulence will tend to establish an inertial subrange.  Inertial subrange – there is transfer of energy within a specified wave number band but no appreciable energy production or dissipation.  In inertial subrange, the eddies are isotropic locally in wave number space and dimentional analysis shows that the energy density is proportional to K-5/3.  The energy is found to cascade toward higher wave number.





	Due to continue cascade of energy down the spectrum, resulting from mutual interactions of the “eddies”, the higher wave number end of the spectrum loses “knowledge” of precise way in which energy has been fed into the turbulence from the mean flow and from buoyancy effects and takes a universal form which depends only on K the rate of energy dissipation (		





F(K) = C(2/3 K-5/3





This is the inertial subrange.  Experimentally determined values of C are between 0.45 and 0.5, when K is radians/meter.





�
	Spectrum of Turbulence





�EMBED Unknown���– measure of turbulent energy; important to know how the energy is distributed among the various turbulence frequency.





S(n) – spectral density. The resulting spectrum is a curve with total are equal to �EMBED Unknown���.





Other coordinate axes used:





1)	Spectrum “normalized” so that area under curve is equal to unity.  The normalized function is F(K) or F(n)


	


�EMBED Unknown���F(K) dK = 1 =�EMBED Unknown���S(K) dK/u12





2)	Since ( F(K) dK = ( K F(K) d(lnK), a plot of K F(K) against lnK will preserve equality of areas in corresponding wave bands while compressing the scale; an advantage, because of wide range of frequency in the atmosphere.





3)	Hinze has shown that for local isotropy	





( = 15(�EMBED Unknown���K2F(K) dK





A plot of K2 F(K) against K or K3 F(K) against lnK will show the contributions of different wave number to energy dissipation rate. �






	Frequency spectra obtained in terms of velocity components separated in time.  Taylor hypothesized that the time and space spectra are equivalent if n = uK, u – wind speed.  





As the mean wind advection the turbulence the statistical properties are unchanged, just as if the eddies were “frozen” in the wind stream.





	Tests verify this except at the largest wave length when the frequency spectra fall below the equivalent wave number spectra.  The 1-D frequency spectra for (u,v,w) are as follows in the inertial subrange:





	Fu(n) = 0.15u2/3 (2/3 n-5/3





	Fv(n) = Fw(n) =  0.2u2/3 (2/3 n-5/3





In neutral conditions: 





(~ u*3/z ~ u3/z





n Fu(n) = 0.26(n z/u)-2/3	


   u2*		 





(nz/u)-2/3 	is a dimensionless frequency


�



Usually assumed that turbulence homogeneous in horizontal plane.  Turbulence is not homogeneous in vertical because of shear:





	Isotropy:	�EMBED Unknown���





Many of the theoretical results pertaining to isotropy do not apply to the surface boundary layer. 





Local isotropy – when high frequency turbulence is isotropic although low frequency  fluctuations may not be.  A limiting frequency specified when discussing local isotropy.





Frozen turbulence – experimental one-dimensional spectra an commonly obtained by moving a probe rapidly through the turbulence so that the velocity fluid doesn’t change during the time of measurement.  The probe sees a fluctuating velocity which is a function of time; if traversing speed U large enough, the velocity signal can be identified with u(x/U) – Taylor’s hypothesis; 





t = x/U only if u/U << 1.





Frequency spectra – obtained in terms of velocity component separated in time.  Taylor hypothesized that the time and space spectra are equivalent 





if n = uk, u-wind speed.  





As the mean wind advects the turbulence, the statistical properties are unchanged just as if the eddies were “frozen” in the windstream.





Tests verify this except at the largest wavelength where the frequency spectrum falls below the equivalent wave number spectra.  The 1-D frequency spectra for (u,v,w) are as follows in the inertial subrange:





	Fu(n) = 0.15u2/3 (2/3 n-5/3





	Fv(n) = Fw(n) = 0.2u2/3 (2/3 n-5/3





To proceed further, magnitude and behavior of ( is required.  Neglecting divergence of vertical flux of energy and assuming steady conditions the energy equation, gives equality in local energy productions and dissipation





	( = u*2 du/dz + gH/(cpT = u*2 du/dz (1 – Rf)





In the surface layer:





	( = u*3 ((m  z/L)/kz





So that in neutral conditions:





	( ~ z-1	





In unstable conditions,





	( ( -u*3/kL ( gH/(cpT


	


and is independent of z and u.





Returning to spectral forms, in neutral conditions, since 





	( ~ u*3/z ~ u3/z





	nFu(n)/u*2 = 0.26(nz/u)-2/3





in convective conditions, since ( is constant





	F(n) = 0.14u2/3 n-5/3





Another major parameter is (m.  





For w spectra (m ( 4l (l is the integral length scale). In near neutral conditions, l/z lies between 0.5 and 1.0.  





For u and v spectra - (m no obvious scaling of (m with height.  


�



The two parameters (and (m which characterize the general shape and position of the spectra have been shown to be important in defining diffusivity K(z).  





It can be expressed in terms of the Lagrangian time scale 


(L:	K = (2w(L.





The time scale is related to Eulerian length-scale l by several approximations:





	(L ( 0.44 l/(w





since (3w/l ~ ( and (m ~ l ( 





K ~ (1/3 (m4/3 





or K = 1/15(1/3 (4/3





	This formula provides useful means of estimating diffusivity as it only involves parameters that can be evaluated using turbulence probes within sampling periods which are reasonably short and within which the overall meteorological situation can be assumed unchanged.








	The third parameter of importance is the energy (u2, (v2, (w2.  The magnitudes of (u and (v are strongly influenced by meso-scale motions and are not well correlated with the vertical shearing stress.





The ratio: (u/u* varies between 2.1 and 2.9, (v/u* lies between 1.3 – 2.6.





(w is more easily specified.  In neutral conditions,





 (w/u* ~ 1.26.  





In very convective situation (w3 ~ 1.3g (�EMBED Unknown���/T) Z


�



Tennekes got:





	(w3 = 0.2 g ((�EMBED Unknown���)o/To) h


	h – total depth of boundary layer


