Estimating Evaporation





A)	Hydrological Balance Calculations





This primarily of use estimating evaporation from water bodies.  The water budget equation is written:





	E = P - (F - (S,





Where:





E = evaporation volume from the water body,


P = precipitation on the water body,


(F = net volume of outflow (above and below ground),


(S = net storage change in the water body,





	The same principles can be applied in the case of a snowpack.  Here the precipitation component should include  condensation: runoff involves surface and groundwater; and the storage changes must include both the snowpack and the soil.


�



B)	Energy Balance Method 	





The basic formulation is as follows:





LE = Rn – H – G - (S + LP,





Where:


	


	L = latent heat of vaporization (or sublimation),


	Rn = net radiation,


	H = sensible heat flux to the atmosphere,


	G = sensible heat flux to the soil interface,


(S = change of heat storage in the snowpack,


P = precipitation and condensation





	Since the sensible heat flux to the atmosphere is not readily determined with any reliability, it is usual to employ the ratio of sensible to latent heat (the Bowen ration, ().





	( = H/LE = 0.61(Ts – T�a)/(e�s – ea) p/1000,





Where:





	T = temperature ((C)


	ea = vapor pressure in the air(mb)


	es = saturation vapor pressure for the temperature of the water,


	p = air pressure (mb).





( is close to unity for moist vegetated surfaces increases to 5 – 10 dry surfaces.





Substituting ( in the equation above (ignoring the (S and LP terms),


	


	LE = (Rn – G)/(1 + ()





However, it is more common to use this approach in some combination method (described below).





	Evaporation estimates based on this procedure, in the case of snow covers in the Valdai and at Omsk, gave random errors of 0.44 mm day-1 according to Kuz’min (1972 p.151).
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C)	The aerodynamic method	





This method considers the role of turbulent diffusion in the vertical flux of water vapor.  The basic expression, for the so-called ‘bulk method’, is known as Dalton’s equation.





	E = -Kw (ew – ea)





Where Kw = the turbulent exchange coefficient for water vapor.





Kw is expressed as a function of wind speed.  For a water surface, evaporation (mm) can be determined from the empirical equation:





	E = 0.13u2 (es – e2),





Where: 


	


	u2 = wind speed (m s-1) at 2 m.


	e2 = vapor pressure at 2 m (Gangopadhyaya et al., 1966)





For snow, Kuz’min (1970) gives the following expression.





	E = (0.18 + 0.098u10) (es – e2),





Where:





	u10 = wind speed (m s-1) at 10 m,


	es = saturation vapor pressure (mb) at snow surface temperature.





	More generally, equations for vertical vapor flux take account of the profiles of wind and vapor pressure.  Assuming neutral stability and therefore a logarithmic wind profile, and assuming that the coefficient of vapor exchange is equivalent to that for momentum exchange, then





	E(cm s-1) = k2((q2 – q)(u2 – u1)/ln(z2/z1)2


�



Where: 


	


	K = Von Karman’s constant (( 0.37)


	( = air density (g cm-3)


	q = specific humidity


	u = wind speed (cm s-1)


	z = height)





This is essentially Sverdrup’s equation (see Light, 1941)
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D)	Combination methods		





The most widely used methods combine the aerodynamic and energy budget equations.  Penman’s (1963) equation for evapotranspiration from a vegetated surface 


(ET, mm day-1) is:





	ET = (((Rn/(L) + Ea)/(((((((((,





Where: 


( = the psychrometric coefficient (0.66 mb K-1 at sea level)


( = the slope of the saturation vapor pressure curve at mean air temperature (((( = 1.3 at 10(C, 2.3 at 20(C, and at 3.9 at 30(C)


Rn = net radiation over the natural surface


L = latent heat of vaporization





	Ea is an aerodynamic term depending on wind speed and saturation vapor pressure deficit:


	


	Ea = 0.26 (1 – u/100) (es – e)





Where:


	u = wind run at 2m (miles per day-1)


	(es – e) = saturation deficit of the air at screen level (mb)





	A computer solution for the equations is described by Chidley and Pike (1970).  At elevated stations, corrections must be made to the psychrometric coefficient (Storr and den Hartog, 1975; Stigter, 1976; 1978) since:


	


	( = cpp/(L,





Where:


	p = atmosphere pressure (mb)


	cp = specific heat of dry air constant pressure (J kg-1 K-1),


	( = the ratio of the molar mass of water vapor to that of dry air (= 0.622)


�



	Tables for calculating Penman’s estimate incorporating this altitude pressure effect have been published by McCulloch (1965).  Stigter (1978) demonstrates that to modify the aerodynamic term for pressure dependence is unnecessary, expect in high-altitude (and therefore cold) windy environments where the ratio of the net radiation/aerodynamic terms in the Penman equation is less than one; in such environments evaporation tends to be low anyway.  Altitudinal corrections for ( are appropriate, however, since use of the ‘standard’ value may cause  underestimates of evaporation at mountains stations (Storr and den Hartog, 1975; Stigter, 1976, 1978).  More important, however, are the demonstrated effects of surface roughness length associated with the type of vegetation cover.  It is inappropriate to attempt a detailed discussion of this topic here, especially since the theory is still being examined; some recent studies are described by Thom and Oliver (1977).
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E)	Measurements		





There are several approaches to direct measurement of evaporation and evapotranspiration.  Sensitive instruments are now available for accurate instantaneous measurements of the vertical wind over an aerodynamically rough, flat surface the horizontal windspeed, u, has a vertical dependence of the form





u(z) = [((((1/2/k)] {ln(z – d)/zo + (}





where: 


	


	( = is the momentum flux


( = is the air density


k = is a constant (( 0.41, called ‘von Karman’s’ constant)


d and zo = were parameters which can be determined from the windspeed profile and are called ‘displacement height’ and ‘aerodynamic roughness parameter’ respectively’ 


and


( = is a function of the Richardson number, Ri, which is itself given by equation (18).





	The fluxes of momentum (((((sensible heat (H) and latent heat ((E) are assumed to be related to vertical gradients of windspeed (u), potential temperature (T) and vapor pressure (e) by one dimensional diffusion equations of the form





	((((((KH (u/(z; 





H = (cpKH (T/(z; 





(E = (cp/( KV (e/(z





where KM, KH, KV are the eddy diffusivities.  





The ratio of any two of these fluxes is proportional to the difference in their related gradients, so that when measurements are made at two levels z1 and z2, the fluxes of sensible heat and latent heat can be deduced from their ratio to calculable momentum, using equations which take the final form








�EMBED Unknown��� (	�EMBED Unknown���	





and �EMBED Unknown��� (	�EMBED Unknown���	





Where ( is a ‘universal’ stability correction (related to ( by d (/d ln (z –zo) = ( - 1) which on the basis of present experimental evidence might be assigned the form given in equations (22) and (23).
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Combination Methods:





1)	Penman





	By combining the heat budget and bulk aerodynamic approach, neglecting heat transfer below surface, the surface temperature can be eliminated and E expressed in terms of meteorological quantities.  





Assume surface at saturation:





	R = Lv + E + H = LvE + cp(ƒ(Ua) ((s((((a(





	R = Lv[E + ((/S((ƒ (Ua)(qs – qT)]





qT – saturation specific humidity at the dry-bulb temperature of the air Ta, p(((cp/Lv, 





S – slope of saturation specific humidity curve,


	


	Ea = (((Ua)(qT – qa)





qs – qT = (qs + qa) – (qT – qa) 





R = Lv {E + ((/S) (E – Ea)}





Penman:


	


LVE = S/(S + () R + (/(S + () LvEa	 


	In practice, Ea has been evaluated, from (es – ea) replaced by the saturation deficit (eT - ea).  S has been taken simply as the value at temperature ta, in absence of knowledge of Ts.


R = L{E + (((S(((ua)((( qs + qa) – (qT – qa)]}


	Let Ea = (((ua) (qT – qa)


R = L {E + ((S (E – Ea)}


R = L/S {E + ((S (E – Ea)}


RS = LES + L(E - L(Ea = LE(S + () - L(Ea


RS + L(Ea = LE(S + ()


LE = R (S/(S + ()) + (/(S + () LEa


Methods for estimating evapotranspiration and evaporation:


1.	Heat budget-energy balance simplified version


Definitions:


Psychrometric formula – semi-empirical relation giving the vapor pressure in terms of the barometer and psychrometer readings.


Psychrometric tables – used to obtain vapor pressure relation humidity and dew point from values of wet-bulb and dry bulb temperature.


Psychrometric charts – a monogram for graph obtaining relation humidity absolute humidity and dew point from wet and dry bulb thermal readings.





R – G = H + LvE


( = H | LvE





For fully ventilated thermometers





	e = (((Tw – AP (T – Tw) = (((Tw(((kD





where (((Tw is the saturation vapor pressure at wet bulb temperature, Tw, 


A - an accurately known psychrometric constant, K = Ap





D = T – Tw wet bulb depression,





(e = e2 – e1


     = (((Tw2� ( (((Tw1 – AP[T2 – Tw2 – (T1 – Tw1)]





S – determinable from pshychrometeric tables.  





For small differences near enough to the “slope” of the saturation vapor pressure curve, i.e.,





	S (((((((Tw/(Tw }Twa





	Twa = (Tw2 + Tw1)/2





S varies slowly with Twa and even more slowly with (Tw.  Equation (a) led to construction of the charts, from which (S + k)/k and the appropriate value of k can be found.


�



Specific humidity difference can be expressed by:





	(q = s(Tw - ((D = (s + () (Tw - ((T





where s ( 0.63/p S, ( = 0.63A ( 0.42 m gr/gnn(C





For all practical purpose, the ratio (s + ()(( equals (S + K)/K





1/(1 + () = (q/((q + ((T)= ((s + (((Tw - ((T)/(s + ()(Tw = 1 - (((s + () ((T/(Tw)





E = (R – G)/L {1 - (((s + ()((T/(Tw)}





The ratio (((s + () can be obtained also from charts.














 		


