AOSC400-2015 September 17, Lecture \# 5

- Review of concepts from Lecture \# 4
- Handouts-supplements
- Examples how to compute:
- Earth-sun distance
- Solar time
- Declination
- Solar zenith angle
- Reflectance/albedo

Earth-sun distance factor

Laws that apply to solar radiation: The Inverse Square Law

As you go away from the sun, the same energy is distributed over a larger area resulting in less energy per unit area.

Basic laws affecting the amount of radiation received from the sun: The Inverse Square Law

Copyright © 2004 Pearson Prentice Hall, Inc.

Sun - Earth Distance (r)

- Earth revolves around sun in elliptical orbit with the sun in one of the foci. Amount of solar radiation reaching the earth is inversely proportional to the square of the distance from the sun.
- The mean sun-earth distance r_{0} is called one astronomical unit:
- $1 \mathrm{AU}=1.496 \times 10^{8} \mathrm{~km}$
- Formula for the reciprocal of the square of the radius vector of the earth-the eccentricity correction factor of the earth orbit, E_{0} is:

A simple way to determine the Earth - Sun distance Factor, ε_{0}

$$
\begin{gathered}
\varepsilon_{0}=\left(r_{0} / r\right)^{2}=1.000110+0.034221 \cos \Gamma+ \\
0.001280 \sin \Gamma+0.000719 \cos 2 \Gamma+ \\
0.000077 \sin 2 \Gamma
\end{gathered}
$$

Here Γ is in radians and known as the day angle and equals:

$$
\Gamma=2 \pi\left(d_{n}-1\right) / 365
$$

d_{n} is the day number of the year ranging from 1 on January 1 to 365 on December 31.

For engineering application:

$$
\varepsilon_{0}=\left(r_{0} / r\right) 2=1+0.033 \cos \left[\left(2 \Pi d_{n} / 365\right)\right]
$$

Variation in earth-sun distance leads to
variation in extraterrestrial flux in the range
of (+-) 3%.

How to determine sun elevation θ ?

SUN

HORIZONTAL IRRADIANCE IRRADIANCE $I_{0 n}$

ZENITH

NORMAL

The solar zenith angle $-\theta_{z}$

- Intuitively, this angle depends on where on earth we are (latitude), what is the time of the day (measured in hour angles) and the season of the year (declination). Namely, the following parameters:
- φ - latitude
- ω hour angle
- δ - declination
- Each will be discussed in detail.

How to compute the solar zenith angle

Based on spherical geometry, the following relationship between the relevant angles is derived:

- $\cos \theta_{z}=\sin (\delta) \sin (\varphi)+\cos (\delta) \cos (\varphi) \cos (\omega)$
- φ - latitude
- δ-declination
- ω hour angle
- Hour angle ω is the distance in angle units from the solar noon (one hour is 15 deg). So first we need to derive the solar time for the location under consideration.
- Solar time $=$ standard time $+\mathrm{E}+4\left(\mathrm{~L}_{\mathrm{st}}-\mathrm{L}_{\text {loc }}\right)$
- E - equation in time in minutes
- $\mathrm{L}_{\text {st }}$ - standard meridian for local time zone
- $L_{\text {loc }}$ - longitude of location in degrees west

Solar Time

Time based on the apparent angular motion of the sun across the sky, with solar noon the time the sun crosses the meridian of the observer.
It is necessary to convert standard time to solar time by applying two corrections:

First-a constant correction for the difference in longitude between the observer's meridian and the meridian on which the local standard time is based. The sun takes 4 minutes to transverse 1^{0} longitude.

Time zones

A time zone is a region on Earth that has a uniform standard time for legal, commercial, and social purposes.

- Second - equation of time.
- Takes into account the perturbation in the earth rate of rotation which affect the time the sun crosses the observer's meridian.
- Solar time is:
- Solar time $=$ standard time $+4\left(\mathrm{~L}_{\mathrm{st}}-\mathrm{L}_{\mathrm{loc}}\right)+\mathrm{E}$
- $\mathrm{L}_{\text {st }}$ is the standard meridian for local time zone
- $L_{\text {loc }}$ is the longitude of the location in degrees west
- $E=(0.000075+0.001868 \cos \Gamma-$ $0.032077 \sin \Gamma-0.014615 \cos 2 \Gamma-$ $0.04089 \sin 2 \Gamma)(229.18)$
- The number 229.18 converts radians into minutes.

$$
\Gamma=2 \pi\left(d_{n}-1\right) / 365
$$

Day number

Equation of time, E , in minutes, as a function of time of year.

Solar declination

- The angle between a line joining the centers of the sun and the earth to the equatorial plane changes every day - the solar declination. It is zero at vernal and autumnal equinoxes and has a value of 23.5° at summer solstice and -23.5° in winter solstice.
- $\delta=(0.006918-0.399912 \cos \Gamma-$
- 0.070257sin $Г-0.006758 \cos 2 \Gamma$ -
- 0.000907sin2Г-0.002697cos3Г-
- 0.00148sin3Г)(180/爪)

Mean sun-earth distance

The Seasons

 is one astronomical unit: $1 \mathrm{AU}=1.496 \times 108 \mathrm{~km}$ \qquadBy now, you have all the tools to compute the solar zenith angle

- $\cos \theta_{z}=\sin (\delta) \sin (\varphi)+\cos (\delta) \cos (\varphi) \cos (\omega)$
- φ - latitude
- δ - declination
- ω hour angle
- Solar time $=$ standard time $+E+4\left(L_{s t}-L_{\text {loc }}\right)$
- E - equation in time in minutes
- L_{st} - standard meridian for local time zone
- $L_{\text {loc }}$ - longitude of location in degrees west

TABLE 2.4 Summary Solar Ephernerisa

Date	Declination		Equation of time		Date		Declination		Equation of time	
	Deg	Min	M in	Sec			Deg	Min	M in	Sec
Jan. 1	-23	4	-3	14	Feb.	1	-17	19	-13	34
5	22	42	5	6		5	16	10	14	2
9	22	13	6	50		9	14	55	14	17
13	21	37	8	27		13	13	37	14	20
17	20	54	9	54		17	12	15	14	10
21	20	5	11	10		21	10	50	13	50
25	19	9	12	14		25	9	23	13	19
29	18	8	13	5						
Mar. 1	-7	53	-12	38	Apr.	1	$+4$	14	-4	12
5	6	21	11	48		5	5	46	3	1
9	4	48	10	51		9	7	17	1	52
13	3	14	9	49		13	8	46	- 0	47
17	1	39	8	42		17	10	12	$+0$	13
21	- 0	5	7	32		21	11	35	1	6
25	+ 1	30	6	20		25	12	56	1	53
29	3	4	5	7		29	14	13	. 2	33
May 1	$+14$	50	$+2$	50	June	1	$+21$	57	+ 2	27
5	16	2	3	17		5	22	28	1	49
9	17	9	3	35		9	22	52	1	6
13	18	11	3	44		13	23	10	$+0$	18
17	19	9	3	44		17	23	22	- 0	33
21	20	2	3	34		21	23	27.	1	25
25	20	49	3	16		25	23	25	2	17
29	21	30	2	51		29	23	17	3	7
July 1	+23	10	-3	31	Aug-	1	$+18$	-14		17
5	22	52	4	16		5	17	12	5	59
9	22	28	4	56		9	16	6	5	33
13	21	57	5	30		13	14	55	4	57
17	21	21	5	57		17	13	41	- 4	12
21	20	38	6	15		21	12	23	- 3	19
25	19	50	6	24		25	11	2	2	18
29	18	57	6	23		29	9	39	1	10
Sep. 1	+ 8	35	-0	15	Oct.	1	-2	53	$+10$	1
5	7	7	$+1$	2		5	4	26	11	17
9	5	37	2	22		9	5	58	12	27
13	4	6	3	45		13	7	29	13	30
17	2	34	5	10		17	8	58	14	25
21	+ 1	1	6	35		21	10	25	15	10
25	- 0	32	8	0		25	11	50	15	46
29	2	6	9	22		29	13	12	16	10
Nov. 1	-14	11	$+16$	21	Dec.	1	-21	41	+11	16
5	15	27	16	23		5	22	16	9	43
9	16	38	16	12		9	22	45	8	1
13	17	45	15	47		13	23	6	6	12
17	18	48	15	10		17	23	20	4	17
21	19	45	14	18		21	23	26	2	19
25	20	36	13	15		25	23	25	+ 0	20
29	21	21	11	59		29	23	17	-1	39

[^0] to year. The American Ephemeris and Nautical Almanac published each year by the U.S. Government Printing Office contains precise values for cach day of each year.

4.2 Extraterrestial Irradiation on a Horizontal Surface

The expressions for radiation on horizontal surfaces will be formulated for different time periods: an hour, a day, a month, and so forth.
A. Hourly Radiation on a Horizontal Surface

On a given day, let $\dot{I}_{0 \mathrm{n}}$ be the extraterrestrial irradiance (rate of energy) on a surface normal to the rays from the sun, where

$$
\begin{equation*}
\dot{I}_{\mathrm{On}}=\dot{I}_{\mathrm{SC}}\left(r_{0} / r\right)^{2}=\dot{I}_{\mathrm{SC}} E_{0} \tag{4.2.1}
\end{equation*}
$$

It is obvious from Fig. 4.2.1 that the irradiance on a horizontal surface can be written

$$
\begin{equation*}
\dot{I}_{0}=\dot{I}_{O_{n}} \cos 0_{z}, \tag{4.2.2}
\end{equation*}
$$

where $\cos \theta_{z}$ is given by Eq. (1.5.1) or

$$
\begin{equation*}
\dot{I}_{0}=\dot{I}_{\mathrm{SC}} E_{0}(\sin \delta \sin \phi+\cos \delta \cos \phi \cos \omega) \tag{4.2.3}
\end{equation*}
$$

The units of Eqs. (4.2.1)-(4.2.3) are $\mathrm{W} \mathrm{m}^{-2}$.

How to determine sun elevation θ ?

SUN

HORIZONTAL IRRADIANCE IRRADIANCE $I_{0 n}$

ZENITH

NORMAL

Daily solar insolation in $\mathrm{W} / \mathrm{m}^{2}$ incident on a horizontal surface at the top of the atmosphere as a function of latitude and date (adapted from Milankovitch, 1930).

Once you know how to compute the solar zenith angle, it is possible to derive the following:

Daily Receipt of Insolation ($\mathrm{W} / \mathrm{m}^{2}$)

Copyright © 2009 Pearson Prentice Hall, Inc.

Once you know how to derive the solar zenith angle, you can estimate the length of the day. How?

Table 2.3 Daylength Times (Sunrise and Sunset) at Selected Latitudes (Northern Hemisphere)

	Winter Solstice (December Solstice) December 21-22			Vernal Equinox (March Equinox) March 20-21			Summer Solstice (June Solstice) June 20-21			Auturnal Equinox (September Equinox) September 22-23		
Latitude	A.M.	P.M.	Daylength	A.M.	P.M.	Daylength	A.M.	P.M.	Daylength	A.M.	P.M.	Dajlength
10	6:10)	6:00	12:00	6.100	6:00	12:00	6:00)	$6: 100$	12:00	6:10)	6:00	12:00
30°	$6: 58$	5:02	10:04	6:00	$6: 00$	12:00	5:02	6.58	13:56	6:00	$6: 00$	12:00
40^{1}	7.30	430	9:00	6:00	6:00	12:00	430	7.30	15:00	6:00)	$6: 00$	12:00
50°	$8: 15$	355	7.50	6:00	$6: 100$	12:00	$3: 55$	$8: 05$	16:10	6:100	6:00	12:00
(6) 0^{0}	9:15	2.45	$5: 30$	6:00	6:00	12:00	2.45	9:15	18:30	6:00	6:00	12:00
$90{ }^{6}$		No sulul			Rising			timuols	sunlight		Setting	

Note: All times are slandard iand do not consider the local option of daylight saving ine.
Copyright 02009 Pearson Prentice Hall, Inc.

The Energy Source for Weather and Climate is Solar Radiation from the Sun

Of interest: what fraction of received goes back The ratio between the reflected part and the incoming part is called albedo (A)

Typical Albedo of Various Surfaces	
SURFACE	ALBEDO (PERCENT)
Fresh snow	75 to 95
Clouds (thick)	60 to 90
Clouds (thin)	30 to 50
Venus	78
Ice	30 to 40
Sand	15 to 45
Earth and atmosphere	30
Mars	17
Grassy field	10 to 30
Dry, plowed field	5 to 20
Water	$10 *$
Forest	3 to 10
Moon	7

Shortwave (solar) Radiation Budget

Earth's albedo that includes clouds can be estimated from satellites

The various

elements that affect the Earth's albedo cover a large range of values: Water: 10\%
Snow: 80-90\%
Desert sand: 40\%

Earth average: 31\%

Copyright © 2009 Pearson Prentice Hall, Inc.
Differences in surface albedo in summer and wintér

Annual Average Surface Downward Shortwave

Review of concept for understanding radiometric quantities (Table to follow)

Element of solid angle

Illustration of a solid angle in polar coordinates and a pencil of radiation through an element of area dA in directions confined to an element of solid angle $\mathrm{d} \Omega$

Solid angle is defined as the ratio of the area σ of a spherical surface intercepted by the cone to the square of the radius r, namely:

$$
\Omega=\sigma / r^{2}
$$

Units of solid angle are expressed in terms of the steradian (sr) For a sphere of surface area $4 \pi r^{2}$, its solid angle is $4 \pi s r$. A differential element of solid angle:

$$
d \sigma=(r d \theta)(r \sin \theta d \phi)
$$

Hence, the differential solid angle is

$$
d \Omega=d \sigma / r^{2}=\sin \theta d \theta d \phi
$$

where 0 and ϕ denote the zenithal and azimuthal angles, polar coordinates.

Table 1: Radiometric quantities (described in Section 3). Symbols in brackets are proposed for alternative use.

NAMES	SYMBOL	UNIT	RELATION	REMARKS	CIE-no.
radiant energy	Q, (W)	$\mathrm{J}=\mathrm{W} \mathrm{s}$			45-05-130
radiant flux	Ф, (P)	W	$\Phi=\frac{\mathrm{d} Q}{\mathrm{dt}}$	power	45-05-135
radiant flux density	(M), (E)	W m ${ }^{-2}$	$\frac{d \Phi}{d A}=\frac{d^{2} Q}{d A d t}$	Radiant flux of any origin crossing an area element	45-05-155
radiant exitance*	M	$\mathrm{W} \mathrm{m}^{-2}$	$M=\frac{d \Phi}{d A}$	$\begin{aligned} & \text { Radiant flux of any } \\ & \text { origin } \\ & \text { emerging from an area } \\ & \text { element } \end{aligned}$	45-05-170*
Irradiance	E	W m ${ }^{-2}$	$E=\frac{d \Phi}{d A}$	$\begin{aligned} & \text { Radiant flux of any } \\ & \text { origin } \\ & \frac{\text { Incident }}{\text { element }} \end{aligned}$	45-05-160
radiance	L	$\mathrm{Wm}^{-2} \mathrm{sr}^{-1}$	$L=\frac{d^{2} \Phi}{d \Omega \mathrm{dA} \mathrm{cos} \vartheta}$	The radiance is a conservative quantity in an optical system	45-05-150
radiant exposure	H	$\begin{aligned} & \mathrm{J} \mathrm{~m}^{-2} \\ & \text { (per expo- } \\ & \text { sure time) } \end{aligned}$	$H=\frac{d Q}{d A}=\int_{t_{1}}^{2} E d t$ t_{1}, t_{2} time	May be used for daily sums of global radiation, etc.	45-05-165
iradiant Intensity	I	W sr^{-1}	$I=\frac{d \Phi}{d \Omega}$	May be used only for radiation outgoing from "point sources"	45-05-145

*The name radiant exitance has been proposed in CIE (1970) to avoid confusion with the name
emittance which has previously been used far thio

[^0]: a Since each year is 365.25 days long, the precise value of declination varies from year

