AOSC400-2015 September 17, Lecture # 5

- Review of concepts from Lecture # 4
- Handouts-supplements
- Examples how to compute:
 - Earth-sun distance
 - Solar time
 - Declination
 - Solar zenith angle
- Reflectance/albedo

Copyright@2015 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission of Rachel T. Pinker

Earth-sun distance factor

© 2007 Thomson Higher Education

Laws that apply to solar radiation: The Inverse Square Law

© 2007 Thomson Higher Education

As you go away from the sun, the same energy is distributed over a larger area resulting in less energy per unit area. Basic laws affecting the amount of radiation received from the sun: The Inverse Square Law

Copyright © 2004 Pearson Prentice Hall, Inc.

Sun – Earth Distance (r)

- Earth revolves around sun in elliptical orbit with the sun in one of the foci. Amount of solar radiation reaching the earth is inversely proportional to the square of the distance from the sun.
- The mean sun-earth distance r₀ is called one astronomical unit:
- 1 AU=1.496x10⁸ km
- Formula for the reciprocal of the square of the radius vector of the earth-the eccentricity correction factor of the earth orbit, E₀ is:

A simple way to determine the Earth – Sun distance Factor , ε_0

 $ε_0 = (r_0/r)^2 = 1.000110+0.034221cos\Gamma+$ 0.001280sinΓ+0.000719cos2Γ+ 0.000077sin2Γ lere Γ is in radians and known as the day

Here Γ is in radians and known as the day angle and equals:

 $\Gamma = 2\pi (d_n - 1)/365$

d_n is the day number of the year ranging from 1 on January 1 to 365 on December 31.

For engineering application:

 $\epsilon_0 = (r_0/r)2 = 1+0.033cos[(2\Pi d_n/365)]$

The solar zenith angle - θ_z

- Intuitively, this angle depends on where on earth we are (latitude), what is the time of the day (measured in hour angles) and the season of the year (declination). Namely, the following parameters:
- ϕ latitude
- ω hour angle
- δ declination
- Each will be discussed in detail.

How to compute the solar zenith angle

Based on spherical geometry, the following relationship between the relevant angles is derived:

- $\cos\theta_z = \sin(\delta)\sin(\phi) + \cos(\delta)\cos(\phi)\cos(\omega)$
- ϕ latitude
- δ declination
- ω hour angle
- Hour angle ω is the distance in angle units from the solar noon (one hour is 15 deg). So first we need to derive the solar time for the location under consideration.
- Solar time = standard time + E + 4 ($L_{st} L_{loc}$)
- E equation in time in minutes
- L_{st} standard meridian for local time zone
- L loc longitude of location in degrees west

Solar Time

Time based on the *apparent angular motion of the sun across the sky*, with solar noon the time the sun crosses the meridian of the observer. It is necessary to *convert* standard time to solar

time by applying two corrections:

First-a constant correction for the difference in longitude between the observer's meridian and the meridian on which the local standard time is based. The sun takes 4 minutes to transverse 1⁰ longitude.

Time zones

© Brooks/Cole, Cengage Learning

A **time zone** is a region on Earth that has a uniform **standard** time for legal, commercial, and social purposes.¹²

- <u>Second</u> equation of time.
- Takes into account the perturbation in the earth rate of rotation which affect the time the sun crosses the observer's meridian.
- Solar time is:
- Solar time = standard time + $4(L_{st} L_{loc}) + E$
- L_{st} is the standard meridian for local time zone
- L_{loc} is the longitude of the location in degrees west

 E = (0.000075+0.001868cosΓ-0.032077sinΓ-0.014615cos2Γ-0.04089sin2Γ) (229.18)

• The number 229.18 converts radians into minutes. $\Gamma = 2\pi (d_n - 1)/365$

Equation of time, E, in minutes, as a function of time of year.

Solar declination

- The angle between a line joining the centers of the sun and the earth to the equatorial plane changes every day - *the solar declination*. It is zero at vernal and autumnal equinoxes and has a value of 23.5^o at summer solstice and – 23.5^o in winter solstice.
- δ = (0.006918-0.399912cosΓ-
- 0.070257sinΓ-0.006758cos2Γ-
- 0.000907sin2Γ-0.002697cos3Γ-
- 0.00148sin3Γ)(180/π)

By now, you have all the tools to compute the solar zenith angle

- $\cos\theta_z = \sin(\delta)\sin(\phi) + \cos(\delta)\cos(\phi)\cos(\omega)$
- ϕ latitude
- δ declination
- ω hour angle
- Solar time = standard time + E + 4 ($L_{st} L_{loc}$)
- E equation in time in minutes
- L_{st} standard meridian for local time zone
- L loc longitude of location in degrees west

			cli- ion	Equa of t				cli- tion	Equa of t	
Da	te	Deg	Min	Min	Sec Da	Date	Deg	Min	Min	Sec
Jan.	1	-23	4	- 3	14	Feb. 1	-17	19	-13	34
	5	22	42	5	6	. 5	16	10	14	2
	9	22	13	6	50	9	14	55	14	17
	13	21	37	8	27	- 13	13	37	14	20
	17	20	54	9	54	. 17	12	15	14	,10
	21	20	5	11	10	21	10	50	13	50
	2.5	19	9	12	14	25	9	23	13	.19
	29	18	8	13	5					
Mar.	1	- 7	53	-12	38	Apr. 1	+ 4	14	- 4	12
	5	6	21	11	48	. 5	5	46	3	1
	9	4	48	10	51	9	7	17	1	52
	13	3	14	9	49	- 13	8	46	- 0	47
14	17	1	39	8	42	17	10	12	+ 0	13
	21	- 0	5	7	32	21	11	35	1	6
	25	+ 1	30	6	20	25	12	56	1	53
	29	3	4	5	7	29	14	13	.2	33
May	1	+14	50	+ 2	50	June 1	+21	57	+ 2	27
	5	16	2	3	17	5	22	28	1	49
	9	17	9	3	35	9	22	. 52	1	6
	13	18	11	3	44	13	23	10	+ 0	18
	17	19	9	3	44	17	23	22	- 0	33
	21	20	2	3	. 34	21	23	27.	1	25
	25	20	49	3	16	25	23	25	2	17
	29	21	30	2	51	29	23	17	3	7
July	1	+23	10	- 3	31	Aug. 1	+18	-14	- 6	17
-	5	22	52	4	16	5	17	12	5	59
	9	22	28	4	56	9	16	6	5	33
	13	21	57	. 5	30	13	14	. 55	4	57
	17	21	21	5	57	17	13	41	• 4	12
	21	20	38	6	15	21	12	23	• 3	19
	25	19	- 50	6	24	25	11	2	2	18
	29	18	57	6	23	29	9	39	1 .	10
Sep.	1	+ 8	35	- 0	15	Oct. 1	- 2	53	+10	1
	5	7	7	+ 1	2	5	4	26	11	17
	9	5	37	2	22	9	5	58	12	27
	13	4	6	3	45	13	7	29	13	30
	17	2	34	5	10	17	8	58	14	25
	21	+ 1	1	6	35	21	10	25	15	10
	25	- 0	32	8	0	25	11	50	15	46
	29	2	6	9	22	29	13	12	16	10
Nov.	1	-14	11	+16	21	Dec. 1	-21	41	+11	16
	5	15	27	16	23	5	22 .	16	9	43
	9	16	38	16	12	9	22	45	8	1
	13.	17	45	15	47	13	23	6	6	12
	17	18	48	15	10	17	23	20	4.	17
	21	19	45	14	18	21	23	26	2	19
	2.5	20	36	13	15	25	23	25	+ 0	20
- a-	29	- 21	21	11	59	29	23	17	- 1	39

TABLE 2.4 Summary Solar Ephemeris^a

^aSince each year is 365.25 days long, the precise value of declination varies from year to year. The American Ephemeris and Nautical Almanac published each year by the U.S. Government Printing Office contains precise values for each day of each year.

48

4.2 Extraterrestrial Irradiation on a Horizontal Surface

The expressions for radiation on horizontal surfaces will be formulated for different time periods: an hour, a day, a month, and so forth.

A. Hourly Radiation on a Horizontal Surface

On a given day, let I_{0n} be the extraterrestrial irradiance (*rate* of energy) on a surface normal to the rays from the sun, where

on the following reaction $i_{0n} = \hat{I}_{SC}(r_0/r)^2 = \hat{I}_{SC}E_0.$ (4.2.1)

It is obvious from Fig. 4.2.1 that the irradiance on a horizontal surface can be written

or something mexpensive a

where $\cos \theta_z$ is given by Eq. (1.5.1) or $\dot{I}_0 = \dot{I}_{0n} \cos \theta_z$, (4.2.2) $\dot{I}_0 = \dot{I}_{SC} E_0 (\sin \delta \sin \phi + \cos \delta \cos \phi \cos \omega)$. (4.2.3) The units of Eqs. (4.2.1)–(4.2.3) are W m⁻².

Daily solar insolation in W/m² incident on a horizontal surface at the top of the atmosphere as a function of latitude and date (adapted from Milankovitch, 1930).

Copyright © 2009 Pearson Prentice Hall, Inc.

Once you know how to derive the solar zenith angle, you can estimate the length of the day. How?

Latitude	Winter Solstice (December Solstice) December 21–22			Vernal Equinox (March Equinox) March 20–21			Summer Solstice (June Solstice) June 20–21			Autumnal Equinox (September Equinox) September 22–23		
	A.M.	P.M.	Daylength	A.M.	P.M.	Daylength	A.M.	P.M.	Daylength	A.M.	P.M.	Daylength
0°	6:00	6:00	12:00	6:00	6:00	12:00	6:00	6:00	12:00	6:00	6:00	12:00
30°	6:58	5:02	10:04	6:00	6:00	12:00	5:02	6:58	13:56	6:00	6:00	12:00
40°	7:30	4:30	9:00	6:00	6:00	12:00	4:30	7:30	15:00	6:00	6:00	12:00
50°	8:05	3:55	7:50	6:00	6:00	12:00	3:55	8:05	16:10	6:00	6:00	12:00
60°	9:15	2:45	5:30	6:00	6:00	12:00	2:45	9:15	18:30	6:00	6:00	12:00
90°	No sunlight			Rising Sun		Continuous sunlight		Setting Sun				

Note: All times are standard and do not consider the local option of daylight saving time.

Copyright © 2009 Pearson Prentice Hall, Inc.

The Energy Source for Weather and Climate is Solar Radiation from the Sun

Of interest: what fraction of received goes back The ratio between the reflected part and the incoming part is called albedo (A)

SURFACE	ALBEDO (PERCENT)
Fresh snow	75 to 95
Clouds (thick)	60 to 90
Clouds (thin)	30 to 50
Venus	78
lce	30 to 40
Sand	15 to 45
Earth and atmosphere	30
Mars	17
Grassy field	10 to 30
Dry, plowed field	5 to 20
Water	10*
Forest	3 to 10
Moon	7

Shortwave (solar) Radiation Budget

Earth's albedo that includes clouds can be estimated from satellites

The various elements that affect the Earth's albedo cover a large range of values: Water: 10% Snow: 80-90% Desert sand: 40%

Earth average: 31%

Copyright © 2009 Pearson Prentice Hall, Inc.

Differences in surface albedo in summer and winter

Annual Average Surface Downward Shortwave

Top of atm: ~1400W/m² Albedo effect: 700W/m² Due to day/night cycle: 350W/m²

average per day

Illustration of a solid angle in polar coordinates and a pencil of radiation through an element of area dA in directions confined to an element of solid angle $d\Omega$

Solid angle is defined as the ratio of the area σ of a spherical surface intercepted by the cone to the square of the radius r, namely:

$\Omega = \sigma / r^2$

Units of solid angle are expressed in terms of the steradian (sr) For a sphere of surface area $4\pi r^2$, its solid angle is $4\pi sr$. A differential element of solid angle:

 $d\sigma = (r \, d\theta)(r \sin \theta \, d\phi).$

Hence, the differential solid angle is

$$d\Omega = d\sigma/r^2 = \sin\theta \, d\theta \, d\phi,$$

副物の文具

where θ and ϕ denote the zenithal and azimuthal angles, polar coordinates.

NAMES	SYMBOL	UNIT	RELATION	REMARKS	CIE-no.
radiant energy	Q, (W)	J = W s			45-05-130
radiant flux	Φ, (P)	W .	$\Phi = \frac{\mathrm{d}Q}{\mathrm{d}t}$	power	45-05-135
radiant flux density	(M), (E)	W m ⁻²	$\frac{d\Phi}{dA} = \frac{d^2 q}{dA \ dt}$	Radiant flux of any origin <u>crossing</u> an area element	45-05-155
radiant exitance*	М	W m ⁻²	$M = \frac{d\Phi}{dA}$	Radiant flux of any origin <u>emerging</u> from an area element	45-05-170
irradiance	E	W m ⁻² .	$E = \frac{d\Phi}{dA}$	Radiant flux of any origin <u>incident</u> onto an area element	45-05-160
radiance	L	W m ⁻² sr ⁻¹	$L = \frac{d^2 \phi}{d\Omega \ dA \ \cos \vartheta}$	The radiance is a conservative quantity in an optical system	45-05-150
radiant exposure	H	J m ⁻² (per expo- sure time)	$H = \frac{dQ}{dA} = \int_{t_1}^{t_2} E dt$ t_1 $t_1, t_2: time$	May be used for daily sums of global radiation, etc.	45-05-165
radiant intensity	andra Bo bal bal hu T hala ama Ka a	W sr ⁻¹	$I = \frac{d\Phi}{d\Omega}$	May be used only for radiation outgoing from "point sources"	45-05-145

Table 1: Radiometric quantities (described in Section 3). Symbols in brackets are proposed for alternative use.

*The name radiant exitance has been proposed in CIE (1970) to avoid confusion with the name emittance which has previously been used for this quantity (reading of the second confusion with the name